skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Laguna, Guillermo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider the problem of generating a fixed path for a mobile observer in a polygonal environment that can maintain a line-of-sight with an unpredictable target. In contrast to purely off-line or on-line techniques, we propose a hierarchical tracking strategy in which an off-line path generation technique based on a RRT is coupled with an online feedback-control technique to generate trajectories for the mobile observer. 
    more » « less
  2. In this paper, we address the visibility-based target tracking problem in which a mobile observer moving along a p-route, which we define as a fixed path for target tracking, tries to keep a mobile target in its field-of-view. By drawing a connection to the watchman's route problem, we find a set of conditions that must be satisfied by the p-route. Then we propose a metric for tracking to estimate a sufficient speed for the observer given the geometry of the environment. We show that the problem of finding the p-route on which the observer requires minimum speed is computationally intractable. We present a technique to find a p-route on which the observer needs at most twice the minimum speed to track the intruder and a reactive motion strategy for the observer. 
    more » « less
  3. This work explores a variation of the art gallery problem in which a team of static and mobile guards track a mobile intruder with unknown maximum speed. We consider the special case when the mobile guards are restricted to move along the diagonals of a polygonal environment. First, we present an algorithm to identify candidate vertices in a polygon at which either static guards can be placed or they can serve as an endpoint of the segment on which mobile guards move. Next, we present a technique to partition the environment based on the triangulation of the environment, and allocate guards to each partition to track the intruder. The allocation strategy leads to a classification of the mobile guards based on their task and coordination requirements. Finally, we present a strategy to activate/deactivate static guards based on the speed of the intruder. Simulation results are presented to validate the efficacy of the proposed techniques. 
    more » « less